
 

Abstract— In order for robots to effectively engage a person 

in bi-directional social human-robot interaction (HRI), they 

need to be able to perceive and respond appropriately to a 

person’s affective state. It has been shown that body language is 

essential in effectively communicating human affect. In this 

paper, we present an automated real-time body language 

recognition and classification system, utilizing the Microsoft® 

KinectTM sensor, that determines a person’s affect in terms of 

their accessibility (i.e., openness and rapport) towards a robot 

during natural one-on-one interactions. Social HRI experiments 

are presented with our human-like robot Brian 2.0 and a 

comparison study between our proposed system and one 

developed with the KinectTM body pose estimation algorithm 

verifies the performance of our affect classification system in 

HRI scenarios. 

I. INTRODUCTION 

Social human-robot interaction (HRI) is an important 
subset of HRI that involves robots that are designed to 
communicate with humans through natural social cues. In 
particular, to be effective in social HRI, a robot must be able 
to perceive and interpret both verbal and nonverbal 
communication (i.e., body language, facial expressions and 
paralanguage).  

It has been found that nonverbal behaviors communicate 
intent more effectively than verbal statements, particularly in 
communicating changes in affect [1]. Research to date has 
mainly concentrated on developing automated systems for 
interpreting affect from paralanguage and facial expressions, 
e.g., [2,3]. Thus far, few researchers have focused on
automatically identifying affect from static body poses and 
postures [4,5]. In [4], joint angles of people playing a video 
game, obtained with a motion capture system, were manually 
segmented into poses corresponding to winning and losing 
scenarios. These poses were automatically classified into 
concentrating, defeated, frustrated, and triumphant affective 
states. In [5], pose information from a pressure sensitive 
chair was combined with facial features, skin conductance, 
and a pressure sensitive mouse to automatically determine if 
a child was becoming frustrated.  

Our research concentrates on developing an automated 
affect classification system from the display of static body 
poses during one-on-one social HRI. It has been found that 
during interactions between two people, body language can 
be the most important contribution of information for the 
understanding of affective states [6]. Additionally, 
Mehrabian has also shown that body positioning relates the 
attitude of a communicator towards an addressee [7]. Hence, 
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it is important that a robot be able to perceive and interpret 
body language during social HRI to more effectively engage 
a person with its own appropriate display of behavior.  

Although several robots have been developed to 
understand human gestures as input commands, e.g. [8,9], 
they have not yet been designed to take into account static 
body poses to perceive and interpret a person’s affective 
state during social HRI. Our objective is to develop a non-
contact body language recognition and classification system 
for our socially interacting robot Brian 2.0, shown in Fig. 1, 
that can determine a person’s affective state based on his/her 
static body poses. Brian 2.0 is designed as a non-contact 
socially interactive robot capable of task assistance. To 
effectively offer assistance, the robot must be able to both 
interpret and communicate information using natural non-
verbal communication means such as body language.  

Uniquely in this paper, we present an automated affect 
recognition and classification system using 2D and 3D 
sensory information provided by the Microsoft

®
 Kinect

TM
 

sensor. The sensor is integrated onto Brian 2.0, Fig. 1, for 
perception during one-on-one social human-robot 
interactions. In our work, human affect is measured by the 
degree of accessibility (i.e., openness and rapport) of a 
person towards the robot. Research has shown that there is 
an important relationship between body language and a 
person’s degree of accessibility. Specifically, the static body 
poses that a person displays during a one-on-one interaction 
scenario provides insight into the psychological state of that 
person [10]. Herein, we apply the Davis Nonverbal States 
Scale (DNSS), [10], to determine a person’s degree of 
accessibility towards Brian 2.0 as determined from his/her 
static body poses during one-on-one interactions.  

The paper is organized as follows. Section II describes the 
proposed automated body language recognition and 
classification system. Section III presents experiments that 
verify the integration of the proposed system into a social 
robot partaking in HRI scenarios. A detailed performance 
comparison study between our proposed 3D body language 
identification and classification method and the Kinect

TM
 

body pose estimation technique is also presented in Section 
III. The conclusions of the paper are presented in Section IV.

Figure 1. The Socially Assistive Robot Brian 2.0 and its Sensory System. 
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II. BODY POSE ESTIMATION AND CLASSIFICATION

In our work, body language is defined to represent static 
body poses that a person displays during social HRI in order 
to convey affect. Determining human body pose is a 
challenging task during social HRI because of the high 
dimensionality of the search space, large number of possible 
configurations and the sole use of on-board sensors on a 
mobile robot. In this paper, we present the development and 
implementation of a real-time sensor fusion technique 
utilizing the Kinect

TM
 sensor to recognize and classify human 

body language during social HRI.  
The work presented in this paper extends our previous 

research in static body pose recognition and classification 
[11,12]. In particular, this paper presents a robust fully 
automated person independent static body pose recognition 
and classification system utilizing the inexpensive Kinect

TM
 

sensor. We present the first use of the Kinect
TM

 sensor for 
affect classification during one-on-one social HRI scenarios. 
2D color and depth information is obtained from the 
Kinect

TM
 sensor to first perform human body extraction to 

separate the depth and color information of the person from 
background information as well as segment individual body 
parts. These body parts are monitored to determine when a 
person is displaying a static pose. Once a static pose is 
identified, the segmented body parts are fit with ellipsoids. 
An ellipsoid human upper body model is generated using a 
reverse tree structure to represent static poses of a person. 
The ellipsoid model parameters are then used to classify a 
person’s degree of accessibility towards the robot during 
interactions. Each step of this procedure is discussed in the 
following subsections.  

A. Static Body Pose Definition 

During social interaction, static body poses can provide 
information about a person’s accessibility (rapport and 
openness) towards another person. The static body poses 
utilized in this work are derived from the Nonverbal 
Interaction States Analysis (NISA) of the Davis Nonverbal 
States Scale (DNSS) [10] and are defined as static poses that 
are held for at least four seconds. These static poses are 
utilized by NISA to determine how accessible a person is 
towards another person during interaction.  

We utilize NISA’s arrangement of trunk leans and 
orientations as well as arm positions to determine a person’s 
accessibility level towards a robot. Namely, the upper trunk 
and lower trunk are each defined as: Toward (T) when each 
is oriented between 0

o
 to 3

o
 from the robot, Neutral (N) 

when each is oriented 3
o
 to 15

o
 from the robot, or Away (A) 

when each is oriented more than 15
o
. Trunk lean is defined 

as upright when a person’s shoulders are over the hips and 
forward/back when the shoulders are closer/farther than the 
hips in relation to the robot, right/left when the right/left 
shoulder is tilted past the right/left hip. The arm positions are 
defined at T when the arms are closer to the robot than the 
upper trunk, A when the arms are farther from the robot than 
the trunk or N when neither T or A.  

B. Kinect
TM

 Sensor 

The Kinect
TM

 sensor generates both depth and 2D color 
images at a resolution up to 640 x 480 pixels. The sensor 
was calibrated utilizing the Matlab

®
 Calibration Toolbox 

[13] with a 3D checkerboard pattern. The sensor is mounted 
on Brian 2.0’s mobile robotic platform, Fig. 1, and provides 
data for skin color identification and 3D segmentation of a 
person’s upper body for 3D human body pose identification.  

C. Human Body Extraction and Initialization 

Depth-based foreground segmentation is performed to 
segment the person from the background depth data. Due to 
the one-to-one correspondence between the depth and 2D 
data, the background 2D data is also removed, e.g. Fig. 2(a). 
At the beginning of the interaction, an automated pose 
initialization step is performed, where the person is asked to 
stand facing the robot with arms hanging at his/her sides. 
Anthropometric information, [14], is utilized to estimate the 
locations of the waist and hips during initialization.  

Figure 2. Body Pose Identification and Classification Procedure. 

D. Human Body Part Segmentation 

Body part segmentation is performed by first identifying 
the head and lower arms, then the upper and lower trunks, 
and lastly, the upper arms.   
1) Lower Arms and Head Segmentation: The head and lower
arms are identified utilizing skin color information from 2D 
color images. These body parts were chosen because they are 
readily exposed. The lower arms can be exposed by wearing 
short sleeves or rolling up long sleeves to the elbow. This is 
similar to numerous other HRI works that have clothing 
requirements for accurate body pose estimation or tracking, 
i.e., [8,9,15]. Skin regions are identified utilizing a pixel-by-
pixel YCbCr color space range technique developed by Chai 
and Ngan [16].  

Binary images of identified skin regions are utilized to 
determine regions that correspond to a head or lower arms, 
Fig. 2(b). In general, the number of skin regions that can 
represent these body parts can vary between 1 and 3, based 
on the number of occluded or touching body parts (since 
touching body parts appear as a single skin region).  

Each skin region is identified utilizing three parameters, 
Ni, the number of pixels in the region, Pi, the number of 
pixels along the region’s perimeter, and ei, the eccentricity of 
the skin region. Utilizing these parameters, each skin region 
is classified into four cases, as shown in Table I: Case 1 – the 
head, Case 2 – a single lower arm, Case 3(a) – arms crossed, 

(d) Static pose identification 

(f) Pose Classification 

(c) Segmentation of upper and 

lower trunks, and upper arms 

(a) Human body extraction 

(e) Ellipsoid Model 

T 
N Accessibility 

Level 
IV, 12 

T 

T 

(b) Segmentation of lower arms and head 
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Case 3(b) – two skin regions touching (excluding crossed 
arms), and Case 4 – all three skin regions touching. Skin 
regions with Ni < n pixels are classified as noise and 
removed from the binary image. Table I was developed 
based on the analysis of approximately 400 different NISA 
static body poses within the depth range of the Kinect

TM
 

sensor, i.e., 0.5-4m.  
Skin regions identified as Cases 3 or 4 require separation 

into each body part to generate a full upper body model. 
Case 3(a) is separated into two lower arms by utilizing the 
major axis of the ellipse which was fit to the region to 
determine eccentricity as the separation line. Case 3(b) is 
separated into two body parts utilizing a technique that 
identifies a separation point between the body parts by 
analyzing paths of connected centroids of triangles generated 
by performing Delaunay triangulation on the region [11]. 
Fig. 2(b) shows the segmentation of an example pose for 
Case 3(b) with bounding boxes drawn around each 
segmented body part. It should be noted that although 
bounding boxes may overlap, no data is shared between 
body parts. Case 4 is separated by implementing the 
procedure for Case 3(b) twice to separate each of the three 
body parts. With the head and lower arms isolated, the 
remaining body parts can be segmented. 

TABLE I: HEAD AND LOWER ARM CLASSIFICATION CASES 

Case 1: Head 

maxmin HiH NNN  , where NHmin and NHmax are the 

minimum and maximum number of region pixels for a head. 

(1) 

maxmin HiH PPP  , where PHmin and PHmax are the minimum 

and maximum number of parameter pixels for a head. 

(2) 

max0 Hi ee  , where eHmax is the maximum eccentricity for 

a head. 

(3) 

Case 2: Lower Arm 

minmin HiA NNN  , where NAmin is the minimum number 

of pixels for a lower arm. 

(4) 

maxmin LAiLA PPP  , where minmin HLA PP   and 

max maxLA HP P . PLAmin and PLAmax are the minimum and 

maximum number of perimeter pixels for a lower arm. 

(5) 

1max  iH ee . (6) 

Case 3(a): Crossed Arms 

maxmax CAiH NNN  , where NCAmax is the maximum 

number of region pixels for crossed arms. 

(7) 

maxmax CAiLA PPP  , where PCAmax is the maximum number 

of parameter pixels for crossed arms. 

(8) 

maxmax CAiH eee  , where eCAmax is the maximum 

eccentricity for crossed arms. 

(9) 

Case 3(b): Two Arms Touching or Arm Touching Head 

maxmax TiCA NNN  , where NTmax is the maximum 

number of region pixels for two arms touching or one arm 
touching the head. 

(10) 

maxmin TiT PPP  , where maxmin CAT PP  , and PTmin and 

PTmax are the minimum and maximum number of perimeter 
pixels for two arms touching or an arm touching the head. 

(11) 

10  ie , this large range is required for ei due to the wide 

variety of possible configurations of two arms touching or one 
arm touching the head. 

(12) 

Case 4: Both Lower Arms and Head Touching 

The skin region includes both lower arms and the head if it 
does not satisfy any of the previous cases.  

2) Segmentation of Upper and Lower Trunks, and Upper
Arms: The upper trunk is defined as the region between the 

shoulders (minimum height of the region defined as the 
head) and the waist height (identified during initialization). 
The lower trunk is defined as the region between the waist 
and hip locations (identified during initialization). Removing 
the 3D data corresponding to the head, lower arms, and 
upper and lower trunks leaves the 3D data for only the upper 
arms and lower body (i.e., legs). The lower body region is 
easily identified as the largest remaining region that has the 
lowest centroid. This region is removed from the data, 
leaving behind the two remaining 3D data regions 
corresponding to the two upper arms. Example 
segmentations for the upper and lower trunks, and upper 
arms are presented in Fig. 2(c).  

E. Static Pose Identification 

The segmentation procedure described above is performed 
on every 10

th
 frame of data captured by the Kinect

TM 
sensor. 

Bounding boxes are formed around each body part, and the 
size and centroid of these bounding boxes are tracked to 
identify a static body pose. Image size normalization is 
applied to compare normalized centroids and bounding box 
sizes. If these parameters are within an allowable error of 
2.5% when compared to the previous consecutive set of 
images, the current pose is defined to be the same as those in 
the previous frames. Example bounding boxes for body parts 
used for static pose identification are shown in Fig. 2(d). As 
previously mentioned, when a pose is held for 4 seconds it is 
defined as a static pose. Ellipsoids are then fit to the 3D data 
of each segmented body part of a static pose in order to 
generate a 3D human upper body model. 

F. Reverse Tree Structure Ellipsoid Model 

The 3D ellipsoid model of the static body pose is utilized 
with NISA to identify the accessibility of a person interacting 
with the robot. The 3D ellipsoids are fit to each of the seven 
segmented body parts. An example ellipsoid model is shown 
in Fig. 2(e). Ellipsoids are fit to the 3D data utilizing an 
iterative moment analysis technique similar to the technique 
presented in [17]. The ellipsoids for all the body parts are 
then connected together to form a full upper body ellipsoid 
model by applying a reverse tree structure. The head and 
lower arms are taken as the base of the reverse tree structure, 
to which the other body parts are connected. This reverse 
tree structure ensures that the appropriate orientations of the 
lower arms are maintained. The ellipsoid model can then be 
used to determine the degree of accessibility of a person 
towards the robot using the position accessibility scale of 
NISA, i.e. Fig. 2(f).  

G. Accessibility Classification of Static Body Poses 

The position accessibility scale consists of four levels, 
ranging from Level IV (most accessible) to Level I (least 
accessible) which have been defined through numerous 
clinical studies [10]. Each level is identified by the direction 
of trunk lean and the orientation patterns of the upper and 
lower trunks relative to the robot. These four levels are then 
subdivided into 3 sub-levels for finer scaling accessibility 
levels based on the T, N, or A arm patterns. Table II shows 
the combinations of upper and lower trunk orientations, 
trunk leans and arm patterns utilized to define each 
accessibility level.  
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III. SOCIAL HRI EXPERIMENTS

Social HRI experiments were performed in our lab 
involving one-on-one interaction scenarios between a person 
and Brian 2.0. The objective of these experiments was to 
verify the performance of our Kinect

TM
 sensor–based body 

language recognition and classification system. Eighteen 
students, ages 19 to 35, participated in the experiments, each 
naturally implementing a number of different static body 
poses during the interactions for detection, identification, 
and categorization into accessibility levels towards the robot. 
If participants were wearing long sleeves, they were asked to 
roll up their sleeves to their elbows. During the one-on-one 
social HRI interactions the participants stood an average of 
1.4-1.6m from the robot, which is defined to be within the 
accepted social distance for human-human interactions [18].  
Brian 2.0 was controlled in a Wizard of Oz fashion by a 
human operator in an isolated location from the robot and 
participant interaction area. The robot engaged each 
participant in the following four interaction stages: 
1) Introduction Stage: Brian 2.0 would introduce itself,
explain its functionality and inquire about the person by 
asking questions. These questions included, for example, 
“Do you read? What is your favorite book?” Brian 2.0 would 
respond appropriately with general comments, such as “That 
sounds great.” The robot would display body language such 
as waving and pointing and various facial expressions.  
2) Instruction Stage: Brian 2.0 would provide the complete
instructions on how to assemble a picnic table. These 
instructions were provided with a neutral facial expression.  
3) Memory Stage: This stage consisted of a memory activity
adapted from one of the questions from the Mini-Mental 
State Examination [19]. Brian 2.0 asked participants to 
remember a list of three objects, which at a future time it 
would ask the participant to recall. Prior to recall, the robot 
asked questions regarding the participant’s childhood, 
focusing on his/her long term memories, such as “What is a 
happy memory from your childhood?” After approximately 
four minutes, the robot would ask the participant to state the 
three objects. The robot would offer congratulations if the 
participant answered correctly by smiling and saying “That is 
correct!” If the participant responded incorrectly, the robot 
would display a sad facial expression and say “Sorry that is 
wrong.” The robot displayed various body gestures and 
facial expressions during this stage.  

4) Repetitive Stage: Brian 2.0 would perform the same
behavior repeatedly. In particular, it would ask a person to 
spell out the word "world", and then to spell it backwards. It 
would then repeat this behavior for 5 minutes. During this 
stage the robot kept its arms crossed with a neutral facial 
expression.  

Figure 3 shows examples of robot behaviors during the 
interactions. The static body poses of the participants during 
these interactions were identified, and categorized into 
accessibility levels towards the robot.  

Figure 3. Example behaviors of Brian 2.0 during interactions. 

A. Results and Discussions 

One hundred and two samples of different static poses 
displayed by the participants were recognized and classified 
with the proposed static body pose recognition and 
classification technique. Figure 4 presents eight typical static 
body poses displayed by the participants during the social 
HRI experiments. 

The 2D and 3D sensory information, the proposed body 
part segmentation results and ellipsoid models are presented 
in Fig. 4 columns (i) to (iv), respectively. Segmentation 
results are shown as bounding boxes around each identified 
body part in column (iii). A red box corresponds to a head, 
green boxes - the lower arms, blue boxes - the upper and 
lower trunks, and magenta boxes - the upper arms. Although 
bounding boxes appear to overlap, no 3D data is shared 
between body parts. Figure 4 (a) and (g) have both the upper 
and lower trunks in a towards position. In (a) one hand is 
touching the chin while resting on the other arm and in (g) 
one hand is grasping the elbow of the other arm. For the pose 
in (b), the upper trunk is in a neutral position and the lower 
trunk is in a towards position with one hand touching the 
head and the other arm behind the trunk. For pose (c) the 
upper and lower trunks are in a neutral position and the arms 
are at the sides. For pose (d) upper and lower trunks are in 
towards position while the person is leaning forward with 
arms crossed. For pose (e) the upper trunk is in a neutral 
position and the lower trunk is in a towards position while 
leaning forward with both arms behind the trunks. For pose 
(f), both the upper and lower trunks are in an away position 
with arms at the sides. For pose (h), the upper trunk is in a 
neutral position and the lower trunk is in a towards position 
while leaning to the left with the arms crossed. Table III 

(a) Brian 2.0 waving and smiling (b) Brian 2.0 pointing while talking 

(d) Brian 2.0 with one hand on its 
head and a sad facial expression 

(c) Brian 2.0 with crossed arms 
while talking 

TABLE II: ACCESSIBILITY LEVELS 

Trunk Orientation 
Accessibility 

Level 
Arm 

Orientation 
Finer-

Scaling 

Upper/Lower trunk: T/N or 
N/T combined with upright 
or forward leans, T/T with 
all possible leans 

T 12 

IV N 11 

A 10 

Upper/Lower trunk: T/N or 
N/T except positions that 
involve upright or forward 
leans 

T 9 

III N 8 

A 7 

Upper/Lower trunk: N/N, 
A/N, N/A, T/A, A/T with 
all possible leans 

T 6 

II N 5 

A 4 

Upper/Lower trunk: A/A 
with all possible leans 

T 3 

I N 2 

A 1 
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shows the accessibility levels determined from the ellipsoid 
models.  

Figure 4. Experimental Results 

As can be seen in Fig. 4, the ellipsoid models are excellent 
representations of the static body poses displayed by the 
participants. A human expert coder was used to determine 
the baseline static poses and accessibility levels for all the 
poses displayed in the experiments. Overall, 88% of the 102 
ellipsoid models generated matched the baseline static poses. 
Currently, we estimate occluded body parts by utilizing 
ellipsoid parameters from previous frames and the present 
location of adjoining body parts. Occluded body parts are 
denoted by blue ellipsoids, as seen in Fig. 4(f) for the 
participant’s right upper and lower arm. It was found that 
during interactions, the sleeves of the participants would 
move slightly higher or lower on their arms causing the 
estimated ellipsoids of the upper and lower arms to be longer 
or shorter. These body parts were always segmented 
separately, even with changes in sleeve position. It was 
found that 67% of the body poses during the interaction were 
classified as accessibility level IV, 1% as level III, 26% as 

level II and 6% as level I. These results signify that the 
participants, in general, were open to interacting with the 
robot. It should also be noted that all level I and level II 
poses were classified during the Instruction and Repetitive 
stages. 

TABLE III: ACCESSIBILITY RESULTS 

Proposed Classification 

Method 

KinectTM body pose 

estimation 

Body Pose 
Accessibility 
Level 

Finer-
Scaling 

Accessibility 
Level 

Finer-
Scaling 

Fig. 4(a) IV 12 IV 12 
Fig. 4(b) IV 12 IV 11 
Fig. 4(c) II 5 II 5 
Fig. 4(d) IV 12 II 6 
Fig. 4(e) IV 10 II 4 
Fig. 4(f) I 2 I 2 
Fig. 4(g) IV 12 II 6 
Fig. 4(h) III 9 I 3 

B. Performance Comparison 

We conducted a two part performance comparison study 
between our proposed automated body language recognition 
and classification system and the Kinect

TM
 body pose 

estimation algorithm in [20]. The first part of the comparison 
consisted of directly comparing the pose recognition results 
of the two techniques and the second part consisted of 
comparing the accessibility level results obtained from the 
two techniques with the expert coder’s results.  
1) Recognition Comparison: The Kinect

TM
 body pose

estimation technique identifies the 3D coordinates of 20 
joints on a person’s body from each frame of depth 
information [21]. Twelve of these points were utilized to 
generate the 3D skeleton model of the upper body needed for 
the accessibility scale, i.e., hands, elbows, shoulders, 
shoulder center, head, spine, hips and hip center. The same 
102 poses that were identified above were used to generate 
the equivalent Kinect

TM
 skeleton models. The skeleton 

models for the 8 poses in Fig. 4 are presented in column (v) 
as a direct comparison with our proposed technique. The 
accessibility levels generated utilizing the Kinect

TM
 body 

pose estimation technique are also shown in Table III.  
Forty-eight percent of the Kinect

TM
 skeleton models did 

not accurately represent the arm poses of the participant as 
defined by the expert coder, especially when the arms are 
touching other body parts. This can be seen in Fig. 4(a) and 
(b) where the hand does not touch the head. In Fig. 4(d) and 
(h), the lower arms are not crossed appropriately and in Fig. 
4(e) the arms are beside the body when they are actually 
behind the trunks. Lastly, in Fig. 4(g) the left arm is not 
holding the elbow of the right arm.  

The random decision forest utilized by the Kinect
TM

 body 
pose estimation technique was trained on a finite number of 
manually segmented sample depth images [20]. Hence, it is 
dependent on the training images used. Due to the very large 
number of possible poses and varying body shapes of 
individuals, the finite training set will not be able to cover all 
possibilities that exist. Furthermore, it has not been 
developed specifically for static pose recognition. This has 
resulted in the pose errors discussed above. On the other 
hand, the method proposed in this paper utilizes 2D color 
images, in addition to depth information, to identify the 
lower arms and head via skin color information. This allows 
the proposed method to accurately determine the pose of the 

(iv) 
Ellipsoid 

Model 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(i) 
2D Image 

(ii) 
3D Data 

(v) 
Kinect

TM
 SDK 

Skeleton 

(iii) 
Body Part 

Segmentation 

(h) 

(g) 
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arms, even when touching other body parts. It is important to 
note that even though our proposed automated body 
language recognition technique requires an initialization 
pose, the Kinect

TM
 body pose estimation algorithm requires a 

clear frontal view of the head and both shoulders, while the 
elbows need to be located lower than the shoulders and with 
no body parts touching the head in order to separate the 
depth information of a person from the background at the 
start of an interaction  
2) Classification Comparison: The reliability of the
accessibility level results from the proposed automated body 
language recognition and classification system, and the 
Kinect

TM
 body pose estimation technique were compared 

with the accessibility results coded by the trained expert. The 
2D color images of the 102 static body poses were provided 
to the coder to determine the participant’s accessibility level. 
Table IV shows the results of the comparison between the 
coder and two automated accessibility classification 
techniques. The results of the comparison show that our 
proposed automated static body pose classification technique 
had 89% and 86% classification rates for the overall 
accessibility levels and finer-scaling, respectively. The 
Kinect

TM
 body pose estimation technique resulted in 67% 

and 56% classification rates for the overall accessibility 
levels and finer-scaling. The difficulties with accurately 
identifying the arm poses, especially when touching other 
body parts, was the primary cause for the lower classification 
rates for the Kinect

TM
 body pose estimation technique. 

Cohen’s kappa was calculated to find that the strength of 
agreement between the proposed automated body pose 
recognition and classification technique and the Kinect

TM
 

body pose estimation technique with respect to the expert 
coder. Cohen’s kappa was found to be 0.80 for our proposed 
approach, signifying a substantial strength of agreement and 
0.45 for the Kinect

TM
 body pose estimation technique, 

signifying a moderate strength of agreement [22]. 

TABLE IV: STATISTICS FOR PERFORMANCE COMPARISON 

Expert Coder 

Technique 
Accessibility Level 
Matches 

Finer-Scaling 
Matches 

Our body language recognition 
and classification technique 

89% 86% 

KinectTM body pose estimation 67% 56% 

IV. CONCLUSION

In this paper, we present a unique real-time automated 
affect classification system for social HRI applications. The 
proposed body language recognition and classification 
technique utilizes the 2D color and depth information from 
the inexpensive Kinect

TM
 sensor to perform full upper body 

part segmentation and 3D static body pose identification for 
automated classification of a person’s accessibility level 
during one-on-one social HRI. Social HRI experiments as 
well as a detailed performance comparison study show the 
potential of integrating our body language recognition and 
accessibility level classification methodology into the 
human-like social robot Brian 2.0 in order for the robot to 
recognize and classify body language during one-on-one 
interactions. The results motivate future work to incorporate 

the body language recognition and classification system into 
the control architecture of Brian 2.0 to allow the robot to 
appropriately respond to a person’s accessibility level. 
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